Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sensors (Basel) ; 23(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2312841

ABSTRACT

Self-report measures partially explain consumers' purchasing choices, which are inextricably linked to cognitive, affective processes and implicit drives. These aspects, which occur outside of awareness and tacitly affect the way consumers make decisions, could be explored by exploiting neuroscientific technology. The study investigates implicit behavioural and neurovascular responses to emotionally arousing and high-engagement advertisements (COVID-19 content). High-engagement advertisements and control stimuli were shown in two experimental sessions that were counterbalanced across participants. During each session, hemodynamic variations were recorded with functional Near-Infrared Spectroscopy (fNIRS) of the prefrontal cortex (PFC), a neurophysiological marker for emotional processing. The implicit association task (IAT) was administered to investigate the implicit attitude. An increase in the concentration of oxygenated haemoglobin (O2Hb) was found for the high-engagement advertising when this category of stimuli was seen first. Specular results were found for deoxygenated haemoglobin (HHb) data. The IAT reported higher values for highly engaging stimuli. Increased activity within the PFC suggests that highly engaging content may be effective in generating emotional arousal and increasing attention when presented before other stimuli, which is consistent with the higher IAT scores, indicating more favourable implicit attitudes. This evidence suggests that the effectiveness of highly engaging advertising-related messages may be constrained by the order of advertisement administration.


Subject(s)
Advertising , COVID-19 , Humans , Attitude , Emotions/physiology , Hemoglobins
2.
Front Behav Neurosci ; 16: 1040719, 2022.
Article in English | MEDLINE | ID: covidwho-2199039

ABSTRACT

There are a number of key features which make olfaction difficult to study; subjective processes of odor detection, discrimination and identification, and individualistic odor hedonic perception and associated odor memories. In this systematic review we explore the role functional near-infrared spectroscopy (fNIRS) has played in understanding olfactory perception in humans. fNIRS is an optical neuroimaging technique able to measure changes in brain hemodynamics and oxygenation related to neural electrical activity. Adhering to PRISMA guidelines, results of this search found that generally the majority of studies involving healthy adult subjects observed increased activity in response to odors. Other population types were also observed, such as infants, individuals with autism, attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), mild cognitive impairment (MCI) and dysosmia. fNIRS coverage heavily favored the prefrontal cortex, temporal and parietal regions. This review finds that odor induced cortical activation is dependent on multiple factors, such as odorant type, gender and population type. This review also finds that there is room for improvement in areas such as participant diversity, use of wearable fNIRS systems, physiological monitoring and multi-distance channels.

3.
Brain Sci ; 12(5)2022 May 03.
Article in English | MEDLINE | ID: covidwho-1820175

ABSTRACT

In pandemic times, taking advantage of COVID-19-elicited emotions in commercials has been a popular tactic employed by corporations to build successful consumer engagement and, hopefully, increase sales. The present study investigates whether COVID-19-related emotional communication affects the consumer's emotional response and the approach/avoidance motivation toward the brand-measured as a function of brain hemodynamic changes-as well as the purchase intentions. The functional Near-Infrared Spectroscopy (fNIRS) was employed to record neural correlates from the prefrontal cortex while the experimental and control groups were observing respectively COVID-19-related and unrelated advertisements (ads). The hemodynamic patterns suggest that COVID-19-related ads may promote deeper emotional elaboration, shifting consumers' attention from the semantic meaning to the affective features and perhaps supporting a more favorable brand evaluation. Conversely, purchase intentions were only related to the pre-existing level of brand engagement. The findings suggest that leveraging the negative emotional potential of COVID-19 may not shift the explicit purchase intentions but could nonetheless boost emotional engagement, benefitting the final evaluation of the brand at an implicit level.

4.
Front Psychol ; 13: 834426, 2022.
Article in English | MEDLINE | ID: covidwho-1765677

ABSTRACT

The COVID-19 pandemic has prompted the production of a vast amount of COVID-19-themed brand commercials, in an attempt to exploit the salience of the topic to reach more effectively the consumers. However, the literature has produced conflicting findings of the effectiveness of negative emotional contents in advertisings. The present study aims at exploring the effect of COVID-19-related contents on the hemodynamic brain correlates of the consumer approach or avoidance motivation. Twenty Italian participants were randomly assigned to two different groups that watched COVID-19-related or non-COVID-19-related commercials. The hemodynamic response [oxygenated (O2Hb) and deoxygenated hemoglobin modulations] within the left and right prefrontal cortices (PFC) was monitored with Functional Near-Infrared Spectroscopy (fNIRS) while brand commercials were presented, as the prefrontal lateralization was shown to be indicative of the attitude toward the brand and of the approach-avoidance motivation. First, the findings showed that the COVID-19-related contents were able to prompt emotional processing within the PFC to a higher extent compared to contents non-related to COVID-19. Moreover, the single-channel analysis revealed increased O2Hb activity of the left dorsolateral PFC compared to the left pars triangularis Broca's area in the group of participants that watched the COVID-19-related commercials, suggesting that the commercials may have driven participants to dedicate more attention toward the processing of the emotional components compared to the semantic meaning conveyed by the ad. To conclude, despite expressing unpleasant emotions, commercials referring to the highly emotional pandemic experience may benefit the advertising efficacy, increasing the capability to reach customers.

5.
Front Hum Neurosci ; 15: 736415, 2021.
Article in English | MEDLINE | ID: covidwho-1533687

ABSTRACT

Resource scarcity imposes challenging demands on the human cognitive system. Insufficient resources cause the scarcity mindset to affect cognitive performance, while reward enhances cognitive function. Here, we examined how reward and scarcity simultaneously contribute to cognitive performance. Experimental manipulation to induce a polar scarcity mindset and reward conditions within participants under functional near-infrared spectroscopy (fNIRS) recording was implemented to explore the mechanism underlying the scarcity mindset and reward in terms of behavior and neurocognition. Participants showed decreased functional connectivity from the dorsolateral prefrontal cortex (DLPFC) to the ventrolateral prefrontal cortex (VLPFC) with a scarcity mindset, a region often implicated in cognitive control. Moreover, under reward conditions, the brain activation of the maximum total Hb bold signal was mainly located in the left hemisphere [channels 1, 3, and 4, left ventrolateral prefrontal cortex (L-VLPFC) and channel 6, left dorsolateral prefrontal cortex (L-DLPFC)], and there was also significant brain activation of the right dorsolateral prefrontal cortex (R-DLPFC) in the right hemisphere (channel 17). Furthermore, these data indicate the underlying neural changes of the scarcity mentality and demonstrate that brain activities may underlie reward processing. Additionally, the base-tree machine learning model was trained to detect the mechanism of reward function in the prefrontal cortex (PFC). According to SHapley Additive exPlanations (SHAP), channel 8 contributed the most important effect, as well as demonstrating a high-level interrelationship with other channels.

6.
Brain Sci ; 11(8)2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1325603

ABSTRACT

Impaired sense of smell occurs in a fraction of patients with COVID-19 infection, but its effect on cerebral activity is unknown. Thus, this case report investigated the effect of COVID-19 infection on frontotemporal cortex activity during olfactory stimuli. In this preliminary study, patients who recovered from COVID-19 infection (n = 6) and healthy controls who never contracted COVID-19 (n = 6) were recruited. Relative changes in frontotemporal cortex oxy-hemoglobin during olfactory stimuli was acquired using functional near-infrared spectroscopy (fNIRS). The area under curve (AUC) of oxy-hemoglobin for the time interval 5 s before and 15 s after olfactory stimuli was derived. In addition, olfactory function was assessed using the Sniffin' Sticks 12-identification test (SIT-12). Patients had lower SIT-12 scores than healthy controls (p = 0.026), but there were no differences in oxy-hemoglobin AUC between healthy controls and patients (p > 0.05). This suggests that past COVID-19 infection may not affect frontotemporal cortex function, and these preliminary results need to be verified in larger samples.

7.
Int J Environ Res Public Health ; 18(11)2021 06 06.
Article in English | MEDLINE | ID: covidwho-1259493

ABSTRACT

(1) Background: Prolonged lockdowns with stay-at-home orders have been introduced in many countries since the outbreak of the COVID-19 pandemic. They have caused a drastic change in the everyday lives of people living in urbanized areas, and are considered to contribute to a modified perception of the public space. As research related to the impact of COVID-19 restrictions on mental health and well-being emerges, the associated longitudinal changes of brain hemodynamics in healthy adults remain largely unknown. (2) Methods: this study examined the hemodynamic activation patterns of the prefrontal and occipital cortices of 12 participants (5 male, Mage = 47.80, SDage = 17.79, range 25 to 74, and 7 female, Mage = 39.00, SDage = 18.18, range 21 to 65) passively viewing videos from three urban sites in Singapore (Urban Park, Neighborhood Landscape and City Center) at two different time points-T1, before the COVID-19 pandemic and T2, soon after the lockdown was over. (3) Results: We observed a significant and marginally significant decrease in average oxyhemoglobin (Oxy-Hb) over time for each of the visual conditions. For both green spaces (Urban Park and Neighborhood Landscape), the decrease was in the visual cortex, while for the City Center with no green elements, the marginal decrease was observed in the visual cortex and the frontal eye fields. (4) Conclusions: The results suggest that the COVID-19-related lockdown experienced by urban inhabitants may have contributed to decreased brain hemodynamics, which are further related to a heightened risk of mental health disorders, such as depression or a decline in cognitive functions. Moreover, the busy City Center scenes induced a hemodynamic pattern associated with stress and anxiety, while urban green spaces did not cause such an effect. Urban green scenes can be an important factor to offset the negative neuropsychological impact of busy urban environments post-pandemic.


Subject(s)
COVID-19 , Pandemics , Adolescent , Adult , Cities , Communicable Disease Control , Female , Hemodynamics , Humans , Male , Middle Aged , SARS-CoV-2 , Singapore/epidemiology
8.
Brain Sci ; 11(5)2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1217050

ABSTRACT

This study aims to examine the impact of heavy use of tablets on preschoolers' executive function during the Dimensional Change Card Sort (DCCS) task using the functional near-infrared spectroscopy (fNIRS). Altogether, 38 Chinese preschoolers (Mage = 5.0 years, SD = 0.69 years, 17 girls) completed the tasks before the COVID-19 lockdown. Eight children never used tablets, while 16 children were diagnosed as the 'heavy-user'. The results indicated that: (1) the 'non-user' outperformed the 'heavy-user' with a significantly higher correct rate in the DCCS task; (2) the two groups differed significantly in the activation of the prefrontal cortex (BA 9): the 'non-user' pattern is normal and healthy, whereas the 'heavy-user' pattern is not normal and needs further exploration.

9.
Front Hum Neurosci ; 14: 588494, 2020.
Article in English | MEDLINE | ID: covidwho-908335

ABSTRACT

Advances in video conferencing capabilities combined with dramatic socio-dynamic shifts brought about by COVID-19, have redefined the ways in which humans interact in modern society. From business meetings to medical exams, or from classroom instruction to yoga class, virtual interfacing has permeated nearly every aspect of our daily lives. A seemingly endless stream of technological advances combined with our newfound reliance on virtual interfacing makes it likely that humans will continue to use this modern form of social interaction into the future. However, emergent evidence suggests that virtual interfacing may not be equivalent to face-to-face interactions. Ultimately, too little is currently understood about the mechanisms that underlie human interactions over the virtual divide, including how these mechanisms differ from traditional face-to-face interaction. Here, we propose functional near-infrared spectroscopy (fNIRS) hyperscanning-simultaneous measurement of two or more brains-as an optimal approach to quantify potential neurocognitive differences between virtual and in-person interactions. We argue that increased focus on this understudied domain will help elucidate the reasons why virtual conferencing doesn't always stack up to in-person meetings and will also serve to spur new technologies designed to improve the virtual interaction experience. On the basis of existing fNIRS hyperscanning literature, we highlight the current gaps in research regarding virtual interactions. Furthermore, we provide insight into current hurdles regarding fNIRS hyperscanning hardware and methodology that should be addressed in order to shed light on this newly critical element of everyday life.

SELECTION OF CITATIONS
SEARCH DETAIL